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ABSTRACT

Algebraic manipulation detection codes are a class of error detecting
codes which have found numerous applications in cryptography. In this
work we extend these codes to defeat generalised algebraic attacks - we
call such codes general algebraic manipulation detection (GAMD) codes.
We present e�cient construction of GAMD codes for the families of tam-
pering functions corresponding to point additions and degree-bounded
polynomials over a �nite �eld and a construction of non-malleable codes
for the latter.
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1. Introduction

Fault injection attacks are a class of attacks that involve the deliberate in-
troduction of errors into the circuitry or memory modules of a cryptographic
device in attempt to deduce some secret state. Algebraic manipulation detec-
tion codes Cramer et al. (2008) are a class of error detecting codes that can
thwart such attacks when the class of induced faults corresponds to additions
on code-words over a �nite space. More precisely, let s be a message supplied
by an adversary, and suppose c, an element of an abelian group G, is the cor-
responding code-word. If for any ∆ ∈ G it holds that c + ∆ decodes to s′ for
any s′ 6= s, with probability bounded by ε, the scheme is said to be an AMD
code with error probability ε.

Even though AMD codes provide an elegant, keyless alternative to the
widely used message authentication codes for robust transmission over an error-
prone channel, they cannot defeat some types of powerful adversaries. Suppose
that an AMD code is used to protect the output of a one time pad scheme. Let
E(K⊕M) be the output on ciphertext c = K⊕M . If it happens that E possesses
a linear homomorphism, φ, then we have ∆M ◦φ E(c) = ∆M ◦φ E(K ⊕M) =
E(K ⊕ (M ⊕∆M)) = E(K ⊕M ′), where M ′ is the message to be substituted.
It is therefore desirable to consider a more powerful adversarial model in which
an attacker can choose, in addition to the source message, a tampering func-
tion F from a rich class of tampering functions F . In this work, we consider
precisely this model, when the class F corresponds to algebraic functions over
some �nite �eld or the rationals corresponding to the co-domain of the AMD
code. We call such a code a generalised algebraic manipulation detection code
(GAMD code). Following previous works on algebraic manipulation detection,
we distinguish the case when the source message is assumed to be uniformly
distributed over the message space, from the usual (which provides tampering
detection with bounded error probability for any message). These are called
weak generalised algebraic manipulation detection (weak GAMD) and gener-
alised algebraic manipulation detection (GAMD) respectively.

1.1 Our Contributions

We formally introduce the model of generalised algebraic manipulation de-
tection, in which tamperings corresponding to algebraic functions over the am-
bient �eld of the encoding function. In this model we review the previous
constructions for manipulation detection against point additions. We show
that such constructions translate directly to our new model, leading to direct
instantiations of weak GAMD codes and GAMD codes for this class. Addition-
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ally we present an e�cient (possibly new) construction for weak GAMD codes
in the case of encoding over any �nite �eld of characteristic two based upon the
probabilistic method. We also consider attacks corresponding to the class of
polynomial functions. Such attacks in the a�ne case have been considered in
the context of non-malleable cryptography by Aggarwal et al. (2014), Kiayias
et al. (2016). We demonstrate an explicit construction of a GAMD code secure
against the class of polynomial functions of bounded degree. We show that
exact constructions imply corresponding weak GAMD codes with inverse poly-
nomial rate and low error-probability. We present a black-box transformation
of any weak GAMD code to a GAMD code. This construction is quite e�-
cient, implying in view of the above results, the existence of GAMD codes with
constant rate and low error probability for the classes of point additions and
polynomial functions respectively. We show how to construct non-malleable
codes for the class of bounded degree polynomials.

1.2 Related Work

Cabello et al. constructed AMD codes in the context of robust secret shar-
ing Cabello et al. (2002). The notion was made explicit by the works of Cramer
et al. (2008), Dodis et al. (2006) and some further applications provided includ-
ing robust fuzzy extraction and message authentication codes with key manip-
ulation security. In the former one wishes to guarantee recovery of a uniformly
random key from biometric or other noisy data with the property that correct-
ness is maintained under addition of errors up to some prior �xed bound even
if the public parameters are compromised. In a similar vein the goal of the
latter is to prevent forgery of message authentication tags even in the case that
the adversary has algebraic manipulation access to the device storing the key.
Other applications include robust information dispersal and anonymous mes-
sage transmission Cramer et al. (2008). Dziembowski et al. (2010) introduced
the notion of non-malleable coding schemes and gave existential constructions
for arbitrary tampering classes as well as e�cient constructions in the random
oracle model. Liu and Lysyanskaya (2012) constructed computationally secure
non-malleable codes for split-state tampering in the CRS model. Dziembowski
et al. (2013) initiated the study of non-malleable codes from two-source ex-
tractors. Aggarwal et al. (2014) and Chattopadhyay and Zuckerman (2014)
constructed explicit e�cient non-malleable codes in the split-state model. We
show how to construct non-malleable codes from polynomial evasive GAMD
codes.
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2. Preliminaries

We describe the preliminary tools and de�nitions to be used throughout this
work. We begin �rstly by reviewing non-malleable codes Dziembowski et al.
(2010), secondly by stating some combinatorial results and �nally, in Section
2.3, by stating our generalisation of classical algebraic manipulation detection
codes Cabello et al. (2002), Cramer et al. (2008), Dodis et al. (2006).

2.1 Non-Malleable Codes

We recall the notion of non-malleable codes for a class of tampering func-
tions. Informally a non-malleable code is one which guarantees that after de-
coding either the original message is recovered or the message that is recovered
is completely �unrelated� to the original.

De�nition 1 (Non-Malleable Code Dziembowski et al. (2010)). Let F be a
family of tampering functions. For each F ∈ F and s ∈ {0, 1}k, de�ne the
tampering experiment

TamperFs =:

{
c← Enc(s), c̃← F (c), s̃ = Dec(c)

Output s̃.

}
de�ning a random variable over the randomness of the encoding function Enc.
Say that a coding scheme (Enc,Dec) is non-malleable w.r.t. F if for each F ∈
F , there exists a distribution DF over {0, 1}k ∪ {⊥, same∗}, such that, for all
s ∈ {0, 1}k, we have:

TamperFs ≈
{

s̃← DF

Output s if s̃ = same∗, and s̃ otherwise.

}
and DF is e�ciently samplable given oracle access to F (·).

2.2 Combinatorial Tools

We describe some combinatorial tools used in our constructions of GAMDs.

De�nition 2 (Trace Cramer et al. (2015)). Let K and L be �elds. Suppose
that L is separable over K and n := [L : K] >∞. Fix some algebraic closure L̄
of L. Let σ1, . . . , σn be the distinct K-embeddings of L into L̄. The trace map
TrL/K for each x ∈ L is:

TrL/K(x) =

n∑
i=1

σi(x) ∈ K
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De�nition 3 (Di�erence Set Colbourn and Dinitz (2006)). Let (G,+) be an ad-
ditive abelian group of order v. A subset D ⊆ G is a (v, c, λ)-external di�erence
set if |D| = c and every non-zero element of G has exactly λ representations as
a di�erence d− d′ for d, d′ ∈ D. If every non-zero element of G has at most λ
representations d− d′, say that D is a (v, c, λ)-bounded di�erence set.

De�nition 4 (Authentication Code Stinson (1990, 1994)). Let S be a set of
source states, K a set of authentication keys and A be a mapping A : S ×
K → T where T is a set of tags. Let Π be a probability distribution on K.
The probability of a successful substitution attack, with respect to family of
substitution functions F , is

psubF =: max
F∈F,s 6=s′∈S

Pr
K←Π

[F (A(s,K)) = A(s′,K)].

Lemma 2.1 (Schwartz-Zippel). Let K be a �eld and let P ∈ K[x1, . . . , xn]
where (xi)1≤i≤n are indeterminates. Let S ⊆ K be a �nite set and let (ui)1≤i≤n
be selected independently and uniformly at random in S. Then

Pr[P (u1, . . . , un) = 0] ≤ deg(P )

|S|

Lemma 2.2 (Prime Number Theorem Rose (1994)). Let π(x) denote the num-
ber of primes p which satisfy 2 ≤ p ≤ x. Then

lim
x→∞

π(x) · ln(x)

x
= 1

.

2.3 Generalised Algebraic Manipulation Detection Codes

In this section we de�ne a code which is a generalisation of the classical
algebraic manipulation detection coding schemes. The main di�erence is simply
that we allow manipulation functions to be a class of algebraic functions over
a �eld rather than the restriction to point additions on its group considered by
Cabello et al. (2002), Cramer et al. (2008). In this paper K will always be a
�nite �eld or number �eld, i.e., �nite extension of the rationals, however below
we allow K to be arbitrary for completeness.

De�nition 5. Let K be a �eld with associated metric d : K2 → R+ ∪ {0}. Let
G := K and let F be a family of algebraic tampering functions on G. Let S be a
set of symbols. Let E : S → G be a probabilistic encoding and D : G → S ∪ {⊥}
be a deterministic decoding procedure such that PrE [D(E(s)) = s] = 1 for all
s ∈ S.
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• The tuple (E ,D) is an ε-generalised algebraic manipulation detection (GAMD)
code if ∀s ∈ S,∀F ∈ F PrE [D(F (E(s))) 6∈ {s,⊥}] ≤ ε.

• The tuple (E ,D) is a weak ε-generalised algebraic manipulation detection
code if ∀F ∈ F PrE,s∈RS [D(F (E(s))) 6∈ {s,⊥}] ≤ ε.

Let Bd(0, δ) be the set of points at distance at most δ from 0G . The (infor-

mation) rate of a GAMD code is de�ned as r = limδ→∞
log |E(S)∩Bd(0,δ)|

log |G∩Bd(0,δ)| .

2.3.1 Families of Tampering Functions

In this paper we consider two classes of tampering functions on a GAMD
(E ,D) with co-domain G = Fpn for some prime p and positive integer n.

• Point Additions: let Fadd = {F∆}∆∈G where F∆ := x 7→ x+ ∆ over G.

• Polynomial Functions: let FP≤d = {F(~a)}~a∈Gd+1 where F(~a) := x 7→∑d
i=0 aix

i over G.

2.4 Notation

For prime p let Fpn denote the �nite �eld of order pn. Write f = o(g) if

limn→∞
f(n)
g(n) = 0. Write f = Ω(n) if ∃ c > 0 and N0 > 0 such that for all

n > N0, f(n) ≥ c · g(n). Let e(·) denote the real-valued exponential function.
Let SD(, ·, ) denote the statistical distance. For discrete probability distribu-
tions with outcome space X , SD(P0, P1) = 1

2

∑
x∈X |P0(x) − P1(x)|. Given a

collection of metrics {dα}α∈A on collection of sets {Sα}α∈A, the supremum

metric d̂ is de�ned as d̂(x, y) := sup{dα(xα, yα) | α ∈ A} ∀x, y ∈ SA. A func-
tion is algebraic i� it is the root of a polynomial equation. Let Q be the set of
rationals. For �eld K, let P≤d be the space of univariate polynomials of degree
at most d over K. For even integer n denote by In, the subset of permutations
on n objects consisting of involutions with no �xed points.

2.5 Tail Bounds on Sums of Dependent Variables

Lemma 2.3 (Multiplicative Cherno� Bound). Let {Xi}1≤i≤n be a sequence of
independent random variables such that 0 ≤ Xi ≤ 1, E[Xi] = p for 1 ≤ i ≤ n.
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Let X =
∑n
i=1Xi and µ = E[X] = np. Fix 0 < δ < 1. Then

Pr[X < µ(1− δ)] ≤ e(−δ
2µ

2
)

Pr[X > µ(1 + δ)] ≤ e(−δ
2µ

3
)

3. Constructions

In this section we review some constructions for GAMD codes against the
class of tampering functions corresponding to point additions and also degree-
bounded polynomials. Our results show that e�cient GAMD codes (i.e, one
ones with constant rate and low error probability) exist for the former class,
while for the latter, the rate degrades quadratically in the degree of the function.
For the class of point additions, we present two constructions of GAMD codes
based upon di�erence sets. Our �rst can be seen as a speci�c instantiation of
the AMD codes in Section 4.1 Cabello et al. (2002). Our second which is based
upon the probabilistic method allows the construction of GAMD codes for a
broader class of functions.

3.1 Point Additions

Cabello et al. (2002) constructed a di�erence set in Fpl × Fpk from any
surjective map φ : Fpl → Fpk . An e�cient instantiation of φ for arbitrary p can
be found using the �eld trace (De�nition 2). Using this construction we can
build a weak-GAMD with rate 1 − o(1) and arbitrarily low error probability,
described in Lemma 3.2.

Lemma 3.1. Cabello et al. (2002) Let p be an odd prime and l and k be positive
integers such that l ≡ 0 (mod k). Let (G,+) be the product of groups, Fpl×Fpk
under addition. De�ne

Dk,l = {(α, φF
pl
/F
pk

(α2)) : α ∈ Fpl} ⊆ G

Then Dl,k is a (pl+k, pl, pl−k)-external di�erence set.

Lemma 3.2. For a prime p and positive integer n let G = Fnp . Then there
exists a explicit weak (p−1)-GAMD code with respect to the family of point
additions, Fadd, on G, with e�cient encoding and decoding procedure and rate
1− o(1).

Proof. Note G ∼ (Fpn ,+). By Lemma 3.1 we know that for any n > 1 there
exists a (pn, pn−1, pn−2)-external di�erence set D1,n−1 ⊆ G. Let E(S) = D1,n−1
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and consider the quantity p∆ := Prs∈RS [F∆(E(s)) 6∈ {s,⊥}]. Since E is deter-
ministic, and s is chosen uniformly at random, p∆ = #{s′ ∈ S : E(s′)− E(s) = ∆}/|S|.
Thus for each ∆ ∈ G, since E(S) is a (pn, pn−1, pn−2)-di�erence set, p∆ ≤
pn−2/pn−1 = p−1. The rate of E is

log |D1,n−1|
log |G| = 1 − n−1 = 1 − o(1), as

required.

3.1.1 A New Construction

We note that so far the constructions of GAMD codes against the class
of point additions have followed a similar recipe to the constructions of AMD
codes presented in Cabello et al. (2002), Cramer et al. (2008). In this section
we present a construction for this class with new parameters based upon the
probabilistic method.

Lemma 3.3. Let G be an abelian group of order n where n is even. Let
0 ≤ c < 1 be arbitrary. Let I ′n ⊂ In be of polynomial size. Then there exists a
subset S ⊂ G and maps E : [|S|] → G and D : G → [|S|] which de�ne a weak
nc−1-GAMD with respect to the set I ′n. The rate is ρ is c− o(1). The sampling
error is e(− 1

4n
ρ) + |I ′n| · e(−2n2ρ−1).

Proof. We show that for any positive constants 0 ≤ γ < ν < 1, there exists a
set S ⊂ G for which |S| ∈ γ|G|(1±ε) and |S∩F (S)| ≤ ν|S| hold for any F ∈ I ′n.
Taking S = [|S|], ν = nc−1, γ = n(c−1)−o(1) and E and D as in the statement of
the lemma, yields a code with error probability nc−1 and rate log γn

logn = c−o(1).
We will demonstrate the existence of S via a probabilistic argument. Consider
the set S de�ned by sampling each element of G independently with probability
γ. Clearly the size of S, N0, has a Binomial distribution with parameters
(n, γ). We now analyse the size of the intersection S ∩ F (S), where F ∈ I ′n
is arbitrary. Observe that each such F induces a matching on G given by
(x, F (x)) : x < F (x). Moreover, since F contains no �xed points, each such
pair occurs independently with probability γ2. Thus N1 := |S∩F (S)|/2 follows
a Binomial distribution, with parameters (n2 , γ

2). Now by applying Lemma 2.3,
if ε is such that γ < ν(1− ε) < 2γ then

Pr[N0 ≤ nγ(1− ε)] ≤ e(−nγε
2

2
) (1)

Pr[N1 ≥
νnγ(1− ε)

2
] ≤ e(−n(ν(1− ε)− γ)2

6
) (2)

Secondly, applying a union bound over all F ∈ I ′n, we have PrS [|S| ≥ nγ(1−
ε)∩|S∩F (S)| ≤ νnγ(1−ε) for all F ∈ I ′n] ≥ 1−e(−nγε

2

2 )−|I ′n|e(−
n(ν(1−ε)−γ)2

6 ).
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As |I ′n| is polynomial in n, for large enough n this probability is strictly greater
than 0. Let k > 1 and ν = εk−1, γ = εk. Then the function g(·) = (εk−1(1 −
ε) − εk)2 is maximised on the interval (0, 1) by ε0 = k−1

2k . In particular for

ε = ε0, ρ ≥ log2(n·2−(k+1))
log2 n

and Equation 1 implies Pr[N0 ≤ nγ(1 − ε0)] ≤

e(
−nεk+2

0

2 ) ≤ e(−n · ( 1
2 )k+3) ≤ e(−n

ρ

4 ). Equation 2 on the other hand implies

Pr[N1 ≥ νnγ(1−ε0)
2 ] ≤ e(−nε

2k−1
0 (1−2ε0)2

6 ) ≤ e(−n · ( 1
2 )2k+1) ≤ e(−2n2ρ−1).

Thus the sampling error is e(−n
ρ

4 ) + |I ′n| · e(−2n2ρ−1).

Corollary 3.1. Let G = (Fn,+) where n is an arbitrary power of two. Then
there exists a weak (n−1/2)-GAMD with respect to the family Fadd, with rate
1
2 − o(1). The sampling error is e(− 1

4n
1/2) + n−0.1.

Proof. The family Fadd de�nes a subset of In of order n. Thus S ⊆ G exists
with the properties of Lemma 3.3, taking c = 1/2 yields a n−1/2-GAMD with

rate 1/2−o(1). Let ρ = (1−ln 2+ln(1.1 lnn))
2 . Then the sampling error is e(−n

ρ

4 )+

n ·e(−2n2ρ−1) ≤ e(−n
1/2

4 )+n ·e(− ln(1.1 ·n)). S de�nes an (n,
√
n, 1)-bounded

di�erence set.

We remark that the parameters achieved by Lemma 3.3 are essentially op-
timal - matching those of classical parameter sets modulo two Colbourn and
Dinitz (2006). We also prove the following result concerning the class Fadd over
the cartesian power of a �eld K corresponding to the �nite extensions of K
under addition.

Lemma 3.4. Let (E ′,D′) be a weak γ-GAMD over �eld (K,+) for the class
Fadd with rate ρ′. Then there exists (E ,D), a weak γ-GAMD for Fadd over
(Km,+), with rate ρ = ρ′ and γ = 1− (1− γ′)m.

Proof. Since γ ≤ 1−(1−γ′)m it su�ces to prove that limδ→∞
|S∩F (S)∩Bd(0,δ)|

|S| ≤
(1 − γ′)m for each choice of F ∈ Fadd over Km. Therefore we need to show
that for each ε > 0 there exists δε > 0 so that for all F ∈ Fadd,

|S ∩ F (S) ∩Bd(0, δ)| ∈ |S ∩Bd(0, δ)| · ((1− γ′)m ± ε). (3)

Decompose F as
∏m
i=1 Fi where Fi ∈ Fadd acts on the ith copy of K in Km.

Let ε′ = (1 − γ′) ln(1 + ε)m−1. Let δ′ε′ be such that ∀δ′ > δ′ε′ , |S′ ∩ Fi(S′) ∩
Bd′(0, δ

′)| ∈ |S∩Bd′(0, δ′)| ·((1−γ′)±ε′). Then
∏m
i=1 |S′∩Fi(S′)∩Bd′(0, δ′)| ∈∏m

i=1(|S′∩Bd′(0, δ)|·((1−γ′)±ε′)). Let S = S′
m
and d = d′

m
be the supremum

metric on Km. Then (
∏m
i=1 |S′ ∩ Bd′(0, δ′)| · (1 − γ′ + ε′)m) ≤ |

∏m
i=1 S

′ ∩∏m
i=1 Fi(S

′)∩
∏m
i=1Bd′(0, δ

′)| ≤ (
∏m
i=1 |S′∩Bd′(0, δ′))|·(1−γ′+ε′)m). Now ((1−
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γ′)−ε′)m = (1−γ′)m(1−ε′(1−γ′)−1)m ≥ (1−γ′)me−mε′/(1−γ′) ≥ (1−γ′)m(1+
ε)−1. Similarly one can prove (1 − γ′ + ε′)m ≤ (1 − γ′)m(1 + ε). Thus taking
δε = δ′ε′ shows that Equation 3 holds for each choice of ε and F in Fadd overK

m.

To complete the proof, observe that the rate of E is limδ→∞
log2 |S∩Bd(0,δ)|

log2 |Bd(0,δ)| =

limδ→∞
log2(

∏m
i=1 |S

′∩Bd′ (0,δ)|)
log2(

∏m
i=1 |S′∩Bd′ (0,δ)|)

≥ limδ→∞
log2 |S

′∩Bd′ (0,δ)|
log2 |Bd′ (0,δ)|

= ρ′.

3.2 Polynomial Functions

In this section we show to construct explicit GAMD codes secure against
the class of all polynomials of �nite degree d modulo a prime, extending the
constructions in Aggarwal (2015), Aggarwal et al. (2014). We �rst present an
informal overview of our construction, while the construction itself is described
in section 3.2.1.

Our Construction In A Nutshell Aggarwal (2015) constructed codes se-
cure against a�ne functions by constructing a�ne-evasive sets modulo a prime.
The construction uses the reciprocals of all primes less than some inverse power
in the underlying modulus. Fix an a�ne function F and let the reciprocal
primes in its domain be denoted ai and the primes in its range be denoted bi.
In that case an explicit bi-variate quartic relation is derived on the ai and bi
Aggarwal (2015). We follow this principle but instead use Lagrange interpola-
tion to derive a (cyclically) symmetric relation on the ai and bi. Unfortunately
the setting d > 1 necessitates some changes. Firstly there is no longer symme-
try between the ai and bi which appears to be unique to the a�ne setting only.
This implies divisibility relations appear possible only from the bi (primes in
the range of the polynomial). We are able to utilise these at slight expense
(roughly O(log log k) in bit-length) by an additive combinatorics-like construc-
tion of a set of primes with the property that no di�erence of elements of the set
is divisible by another element. We believe this construction, which Lemma 3.5
is devoted to, may be of independent interest.

3.2.1 Construction of Polynomial Evasive GAMDs

Lemma 3.5. For any positive integer N there exists a positive integer B, so
that N primes lie in the interval [0, B] and such that no prime divides the

di�erence of two others for B = O(N ln1+o(1)N).

Proof. By Lemma 2.2 we can �nd Θ( B
lnB ) primes qi in the interval (B/2, B].
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Suppose qi | qj − qk for some qi 6= qj 6= qk. Then B/2 < qi ≤ |qj − qk| ≤ B/2
which is a contradiction.

For positive integer N , denote the above set DN .

Theorem 3.2. Let p a prime of k bits. There exists an explicit weak ε-GAMD
secure against the class FP≤d modulo p of rate 2/Θ(d2) and error probability

ε = O(k)
d · 2−

k
Θ(d2) for any positive integer d.

Proof. As mentioned above, de�ne N(p) = d2p2/(d2+3d−2)/4 ln1.1 p so that q ∈
DN(p) satis�es q < (1− d−1.9) · p2/(d2+3d−2). Let

Pd := {q−1| q prime, q ∈ DN(p)}

Fix ~a = (a0, . . . , ad−1) ∈ Fdp and de�ne F~a(x) =
∑d−1
i=0 aix

i. We will prove

that |S ∩F~a(S)| ≤ d. Suppose to the contrary that there exist distinct (xi)
d+1
i=1

and (yi)
d+1
i=1 in Fp such that F~a(xi) = yi. Let Lj be the jth Lagrange basis

polynomial in the interpolation of (xi, yi)
d+1
i=1 . In that case one has

L(x) =

d+1∑
j=1

Lj(x) =

d+1∑
j=1

yj

∏
k 6=j(x− xk)∏
k 6=j(xj − xk)

Observe that F~a(x) =
∑d−1
i=0 aix

i is of degree d− 1, while L(x) is nominally of
degree d. It follows that the leading coe�cient of L(·) is zero and hence that

d+1∑
j=1

yj∏
k 6=j(xj − xk)

≡ 0 mod p (4)

Write xj = a−1
j and yj = b−1

j . WLOG a1 6= b1, since for any non-trivial F~a the
polynomial F~a(x)− x has at most d− 1 roots. Therefore

d+1∑
j=1

adj
∏
k 6=j ak

bj ·
∏
k 6=j(aj − ak)

≡ 0 mod p

Multiplying out and clearing common terms

d+1∑
j=1

((−1)jad−1
j ·

∏
k 6=j

bk ·
∏

l>k,k 6=j

(al − ak)) ≡ 0 mod p (5)
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Since aj , bj < (1 − d−1.9) · p2/(d2+3d−2) and |al − ak| < max{ak, al} for every
k < l, Equation 5 holds over the integers. In particular, since b1 appears in
every summand except the �rst

b1 | ad−1
1 ·

d+1∏
k=2

bk ·
∏

l>k,k≥2

(al − ak) (6)

We now derive a contradiction as follows. By assumption b1 is distinct from
and hence coprime to a1 and (bi)i≥2. Then b1 | (al − ak) for some l > k which
by our construction of Pd is impossible.

We now prove

Theorem 3.3. Let p be a prime. There exists some constant c so that for any
0 < ε < 1 there exists a ε-non-malleable code (Enc,Dec) for the class FP≤d
where Enc : ZT → Fp and Dec : Fp → ZT whenever p > (Tε )c·d

2

.

Proof. By Theorem 3.2 we know that there exists a set S ⊂ Fp with the prop-

erty that |S| ≤ (log p · p
2

d2+5d+2
−1

) · p and |S ∩ F (S)| ≤ log p·p
−2

d2+5d+2

2d · |S| for
all F ∈ FP≤d. Consider partitioning S into sets (Sm)m of equal size |S|T . De-
�ne Enc : ZT → Fp by Enc(m) = c : c ∈R Zm and Dec(c) = m : c ∈ Sm.

Fix F ∈ FP≤d and de�ne simulation experiment SimF
m as in Figure 1. Note

that distribution DF satis�es Pr[DF = same∗] = Prc∈RFp [F (c) = c] and
Pr[DF = m] = Prc∈RFp [F (c) 6= c ∩ Dec(F (c)) = m] : m ∈ ZT ∪ {⊥}.
We claim that SD(SimF

m,TamperFm) ≤ ε where TamperFm is the tampering
experiment of De�nition 1. First suppose that F (x) ≡ x. In that case
Pr[TamperFm = m] = Pr[SimF

m = m] = 1 so that SD(SimF
m,TamperFm) = 0.

Suppose F (x) ≡ a where a is a constant in Fp. Then Pr[TamperFm = Dec(a)] =

Pr[SimF
m = Dec(a)] = 1 so again SD(SimF

m,TamperFm) = 0. If F 6∈ {id.,Fp},
then Prc∈RFp [F (c) = c] occurs with probability at most dp by Lemma 2.1. Thus
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SimF
m :

1. Pick c ∈R Fp |c ∈ Sm.
2. Output same∗ if F (c) = c else Dec(F (c)).

Figure 1: Tampering simulation experiment.

SD(SimF
m,Dec(F (c)) : c ∈R Fp) ≤ d

p . Now

SD(TamperFm,Dec(F (c)) : c ∈R Fp)

=
∑
m′

|Pr[Dec(F (c)) = m′ : c← Enc(m)]− Pr[Dec(F ((c)) = m′ : c ∈R Fp]|

≤
∑
m′

|Pr[Dec(F (c)) = m′ : c← Enc(m)]|+
∑
m′

|Pr[Dec(F (c)) = m′ : c ∈R Fp]|

≤ Pr[F (c) ∈
⋃

m′∈ZT

Sm′ : c ∈R Sm] + Pr[F (c) ∈
⋃

m′∈ZT

Sm′ : c ∈R Fp]

≤ |S ∩ F (Sm)|
|Sm|

+
|S ∩ Fp|
|Fp|

≤ ε (7)

To satisfy Equation 7 we need log p ·p
1

Θ(d2) · ( T
Θ(d) + 1

p ) + d
p < ε so that for some

constant c it holds that p > (Tε )c·d
2

yielding the result.

We remark that Theorem 3.2 extends to all �nite centred Laurent expan-
sions, i.e., two-sided polynomial expressions about zero, as well as to �nite �elds
with similar parameters.

4. A Weak GAMD to GAMD Transformation

In this section we present a su�cient result for transforming any weak
GAMD code to a GAMD code following a similar idea to that presented in
Section 4 Cramer et al. (2008). Our main result here is Lemma 4.1 which
states that if the classes of tampering functions can be represented by a set of
polynomials in one or more variable of bounded degree d� |K| then any weak
GAMD code for this family can transformed to a GAMD code. In particular
this implies asymptotically e�cient GAMD codes for the class of polynomial
functions with negligible error probability.
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Prop 4.1. Suppose that (E ′,D′) is a weak ε′-GAMD with respect to F where
E ′ : S ′ → G′. Let A : S×S ′ → T be an authentication code. Let G = S×G′×T .
De�ne E : S → G by E(s) = (s, E ′(k),A(s, k)), where k ∈R S ′. De�ne D : G →
S ∪ {⊥} by D(s, c′, τ) = s i� D′(c′) 6=⊥ and τ = A(s,D′(c′)). Then (E ,D) is
an ε-GAMD with respect to F where ε = ε′ + psubF .

Proof. Suppose that c = (s̃, c̃′, τ̃) is a received code-word for source symbol s
under key k. Suppose that s 6= s̃. Then Pr[D′(c̃′) 6= {k,⊥}] ≤ ε′ since (E ′,D′)
is a weak ε′-GAMD and k is chosen uniformly at random in K. Moreover,
Pr[A(s̃, k) = τ̃ ] ≤ psubF since s 6= s̃. Thus the event D(c) = s̃ occurs with
probability at most ε′ + psubF . The result follows.

Lemma 4.1. Let ` be an arbitrary positive integer and K be a �eld. Let
K ⊆ K2 be a �nite set and A : S ×K → T be the message authentication code
de�ned by A((s1, . . . , s`), (x, y)) =

∑`
i=1 six

i + y. Then psubFP≤d
≤ `d
|K| .

Proof. Let F be a �xed polynomial in FP≤d . Let s 6= s′ ∈ S. Consider

the polynomial P (x, y) = F (
∑`
i=1 six

i + y) − (
∑`
i=1 s

′
ix
i + y) in K[x, y]. We

argue this is a non-zero polynomial as follows. First observe that if P ≡
0, then deg(F ) = 1, since otherwise P (x, y) contains a non-trivial power of
y. So let F (u) = a0u + a1. Then a0 = 1 by a similar argument. Thus

P =
∑`
i=1(si − s′i)xi + a1, which is a contradiction since s 6= s′ implies there

exists i for which si 6= s′i. On the other hand the degree of P is at most
deg(F ) · ` ≤ `d. Thus by Lemma 2.1, as k = (x, y) is chosen uniformly in K,
the event P = 0 occurs with probability at most `d

|K| . Finally, P = 0 occurs i�

F (A(s, k)) = A(s′, k), concluding the proof.

Corollary 4.1. For any n ∈ N and large enough prime p there exists an ε-
GAMD of block length n with respect to the family FP≤d over Fp where ε =

2−n/Θ(d2) and the rate is 1− o(1).

Proof. Pick prime p so that p > 2n. By Theorem 3.2 we can construct E ′
over Fp2 so that ε′ ≤ O(log p)

d p−1/Θ(d2). Let A : Fn−3
p × F2

p → Fp be as in

Lemma 4.1. Then as deg(F ) ≤ d for all F ∈ FP≤d, we have psubFP≤d ≤
(n−3)d
p2 by

Lemma 4.1. The rate of E is n−3
n = 1− o(1). The error probability is bounded

by ε = psubFP≤d + ε′ ≤ n
d · 2

−n/Θ(d2) + 2−Ω(n) = 2−n/Θ(d2).
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5. An Addition Evasive GAMD over Q

To construct a code for the class of point additions over the rationals we will
use the result that for any prime power M there exists an integer 1-di�erence
set of size M + 1 inside Zq = {1, . . . , q} where q = M2 +M + 1 Singer (1938).
We denote this set DM and consider q(·) as a function in M .

Theorem 5.1. There exists an explicit weak ε-GAMD over the rationals against
the class of point additions with constant rate (approximately 0.75) and negli-
gible error probability.

Proof. Let N > 0 be an arbitrary integer. Let r(N) be the largest prime such
that r2 + r + 1 ≤ N . Let S ⊂ Q be given by

S := {a
p
| p prime, a ∈ Dr(b p2 c)} (8)

We prove that for any element F ∈ Fadd, |S ∩ F (S)| ≤ 1. Suppose for con-
tradiction that there exist v1, v2, v3, v4 ∈ S such that v1 − v2 = v3 − v4. Let
v1 = a

p , v2 = b
q , v3 = c

r , v4 = d
s where a < p

2 , b <
q
2 , c <

r
2 , d <

s
2 .

Case 1: p 6= q 6= r 6= s. We have (aq− bp)rs = (cs− dr)pq. Then pq|(aq− bp)
and aq−bp 6= 0 as a < p. One the other hand |aq−bp| < max{aq, bp} < pq

2
which is a contradiction.

Case 2: At least two, not all p, q, r, s distinct. WLOG p 6= r and q 6= s.
Then either p = s or q = r. If p = s, ap −

b
q = c

r −
d
p so that (a+ d)rq =

p(br+ cq). Then r | cpq. As p 6= r and c < r, q = r. Thus p | a+ d which
contradicts a, d < p

2 . The case q = r is similar.
Case 3: p = q = r = s. In this case a− b = c− d with a 6= c and b 6= d, which

contradicts Dr(p) being a 1-di�erence set.

We analyse the rate of E . We have ρ = limN→∞
log2 #{x∈S:x= a

N :a≤N}
log2 #{x∈Q:x= a

N :a≤N} . By

Lemma 2.2 for su�ciently large N there are at least N
lnN −1.5 (N/2)

ln(N/2) primes in

the interval [N/2, N ]. We may also choose prime M so that q(M) = b (N/2)
2 c+

O(N1/2). Thus S contains at least
√

(bN4 c) · ( N
lnN −

3N
4 ln(N/2) ) = O(N

3/2

lnN )

elements whose denominator is at most N . Thus ρ = limN→∞
1.5 lnN−ln lnN

ln(N2/2) =
0.75.

The following is immediate by combining Lemma 3.4, Lemma 4.1 and The-
orem 5.1.

Malaysian Journal of Mathematical Sciences 63



Ramchen, K.

Corollary 5.2. Let K be a number �eld of degree k := [K : Q]. Then there
exists a ε-GAMD for the class Fadd over K with rate 1− o(1) and negligible ε
for any choice of k at most polynomial in the message length.

6. Conclusion

We have de�ned a generalisation of algebraic manipulation detection codes
to facilitate detection of tampering by algebraic functions over a �eld. We
have demonstrated explicit constructions of these codes for the families of point
additions and polynomial functions and matching randomised constructions for
the former over �nite �elds. In future work it would be interesting to extend
these constructions as well as to investigate applications of these codes.
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